

Advanced sorting classification models based on Raman spectroscopy and chemometrics to improve WEEE plastics recycling

A. Pocheville, I. Uria, P. España, O. Salas. **Fundación GAIKER** T. Caris, A.R. C. Neiva. Coolrec

Going Green CARE INNOVATION Vienna, 10th May 2023

SUMMARY

- Introduction to the PLAST2bCLEANED project
- Waste of Electric and Electronic Equipment (WEEE) plastics recycling
- Advanced sorting process Raman spectroscopy and chemometrics

Objectives of the project

https://plast2bcleaned.eu/

PLAST2bCLEANED project's aim is to develop a human and environmentally safe recycling process for WEEE plastics in a technically feasible and economically viable manner.

This Project has received funding from the European Union's Horizon 2020 Research and Innovation Programme under Grant Agreement N. 821087

and products

Consortium

WEEE plastics recycling

WEEE plastics treatment → Mechanical separation

Industrial technologies

Density separation Electrostatic separation

Opportunities/Challenges → A large part of these plastics are not recovered now

- Incorrect identification with usual spectroscopic techniques
- Due to the high content of additives like pigments (carbon black), stabilizers, plasticizers or brominated flame retardants (BFR)
- Complex composition of the mix engineering plastics, PCB's, cables, metals (...)
- Regulatory compliance

- Key technologies: Traditional sorting technologies + RAMAN spectroscopy
- Target polymers: HIPS & ABS
- Innovation: Sensing coloured & dark samples
- Considerations for developing the classification models:

Technical requirements of the WEEE plastics recyclers

Quality requirements of the end users of recycled plastics

WEEE FRACTION

SINKING FRACTION

TARGET POLYMERS FOR SORTING

PS:10%-20%

ABS:10%-20%

OTHER POLYMERS: PC/ABS, PC, PP, PMMA, POM, PVC

SORTING TECHNOLOGY: RAMAN SPECTROSCOPY

- Analytical technique based on light scattering that uses a laser as a source of high intense monochromatic light
- Laser wavelength (λ): UV NIR range (532 nm / 785 nm / 1064 nm)

DEVELOPMENT OF CLASSIFICATION MODELS FOR WEEE PLASTICS

APPROACH 1. RAMAN SPECTRUM ANALYSIS

WEEE PLASTICS

RAMAN SPECTROSCOPYSettings:
λ, P(mW), t(s)

SPECTRUM
OPTIMISATION
(Peak intensity,
Baseline
correction...)

POLYMER
IDENTIFICATION
(Spectral library)

2 spectrometers Optosky Lasers: 785 nm & 1064 nm

- Maximise Raman signal
- Reduce fluorescence

Settings:

- Laser power (P=0-500 mW)
- Integration time (t=0.1s 60s)
- Focus distance (4 6 mm)

This Project has received funding from the European Union's Horizon 2020 Research and Innovation Programme under Grant Agreement N. 821087

APPROACH 1. RAMAN SPECTRUM ANALYSIS

Laser 785 nm

✓ Laser 1064 nm

HIPS (BLACK) P=150-350mW, t= 0.1-1s

- Background/fluorescence was observed in many WEEE heavy plastics (<1000cm⁻¹)
- Difficult to discriminate ABS vs. HIPS
- Detector saturated in most black samples (Overheating)

PS & ABS P=500mW, t= 25s

- Longer measuring time possible
- Less fluorescence < 1000 cm-1</p>
- Raman spectrum of better quality for some WEEE plastics (vs. 785 nm)
- Characteristic peaks in some ABS samples

APPROACH 2. RAMAN SPECTRUM DATA ANALYSIS - CHEMOMETRICS

- Chemometrics applies advanced data analysis techniques (Mathematical models) to extract information of a chemical system.
- In spectroscopy is used to:
 - ✓ Remove unwanted signal (background/fluorescence)
 - ✓ Identify patterns in data to classify samples based on features not necessarily known.
- Multivariate Analysis (MVA). 3 methods tested (LDA, SVM and SIMCA)
- Tool: Unscrambler TM 11 software

Aspen Unscrambler™

■ Raman spectral data of WEEE samples: Laser 1064nm, t=1s

MAIN ACHIEVEMENTS PERIOD 2

☐ CLASSIFICATION MODELS OF WEEE SAMPLES WITH CHEMOMETRICS

2. Preprocessing spectral data

3. Model training

4. Samples classification

Representative of the sinking fraction

- Calibration set
- Validation set

	(4)	1	2	3	42	5
ABS_14_S_	1	-6,6239	-13,4894	-4,5384	10,8619	OTHERS
ABS_19_S_	2	-4,3512	-6,3522	-59,0806	-11,8166	ABS
ABS_21_S_	3	-2,5938	-12,8677	6,1266	16,1848	OTHERS
ABS_22_S_	4	-6,9500	-13,7236	-12,9631	5,2556	OTHERS
ABS_23_S_	5	-0,6534	-2,7000	-47,8688	-8,1340	ABS
ABS_24_S_	6	-3,6498	-2,2660	-78,6048	-13,9286	PS
HIPS_19_S	7	-17,3578	-21,6848	-82,1972	-21,8226	ABS
HIPS_20_S	8	-9,1997	-20,7193	5,1185	10,2097	OTHERS
HIPS_21_5.	9	-20,0091	-24,7636	-137,6181	-48,9709	ABS
HIPS_23_S	10	-8,4675	-12,4048	-42,6319	-5,0556	OTHERS
HIPS_24_S_	11	-10,7513	-11,7820	-99,6704	-26,8473	ABS
HIPS_25_S	12	-7,0086	-16,7438	5,6002	14,4159	OTHERS
HIPS_27_5.	13	-13,6159	-26,4162	-3,6291	4,2502	OTHERS
ABS_15_O.	14	-12,0165	-22,6453	-19,0023	-2,8106	OTHERS
ABS_16_O.	15	-9,1852	-24,2042	10,6811	15,2410	OTHERS
ABS_17_0	16	-17,2872	-24,4474	-52,9848	-12,0180	OTHERS
ABS_18_O	17	1,7259	-7,0418	14,8127	16,2429	OTHERS
ABS_19_0_	18	-11,6842	-21,1503	-9,7192	5,5623	OTHERS
ABS_20_O	19	3,5050	-2,3585	3,0657	9,0394	OTHERS
PS_06_OW	20	-3,2536	-12,4194	8,7394	12,8413	OTHERS
PS_07_OW_	21	-13,5839	-22,0888	-12,6690	7,4556	OTHERS
PS_08_OW_	22	-21,6800	-32,6875	-70,7117	-26,4568	ABS
HIPS_15_F	23	-10,5575	-8,0026	-206,1355	-68,5160	PS
HIPS_16_F_	24	-55,5747	-33,6696	-1056,2210	-385,7740	PS PS
HIPS_17_F	25	-16,3430	-21,0689	-83,6233	-23,9036	ABS
HIPS_18_F	26	-14,9770	-13,3222	-225,6815	-78,2906	PS
HIPS_19_F_	27	-8,9608	-8,9709	-138,6550	-43,8955	ABS
HIPS_20_F_	28	-22,4018	-19.0658	-254,8545	-85,9653	PS

Classification results with Unscrambler™ 11

MAIN ACHIEVEMENTS PERIOD 2

☐ CLASSIFICATION MODELS OF WEEE SAMPLES WITH CHEMOMETRICS

INDIVIDUAL MODELS	TARGET POLYMER			
2 CATEGORIES	PS vs. OTHERS	ABS vs. OTHERS		
% CLASS	73	85		
%PURITY	64	60		

MODEL	1-step sorting
4 CATEGORIES	(1) PS, (2) ABS, (3) PC+PC/ABS, (4) OTHERS
% CLASS. (Overall)	~ 60%
%PURITY (PS & ABS)	~ 80%

Working on improving the classification models (Raman spectral data lab-scale)

Improved sorting of HIPS and ABS

DESIGN, DEVELOPMENT AND TESTING OF A RAMAN SORTING PROTOTYPE

Testing results for the classification model at pilot scale by September 2023

THANK YOU FOR YOUR ATTENTION

Contact us for further information:

Raman spectroscopy –Classification models for WEEE plastics

Ainara Pocheville pocheville@gaiker.es

WEEE plastics recycling:

Ana Rita Carvalho Neiva
Ana.Rita.Neiva@coolrec.com

